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Abstract General guidance is offered as to the methodology of change detection in 
time series of hydrological data, embracing stages such as preparing a suitable data 
set, exploratory analysis, application of adequate statistical tests and interpretation of 
results. Although the paper cannot go into full details of the many existing tests, it 
gives an easy-to-follow overview, offering practical hints and describing caveats and 
misconceptions. It serves as a refresher, raising attention to essential things that have 
often been ignored. A particular recommendation of the paper is that greater use of 
distribution-free testing methods, particularly resampling methods, should be made. 
These methods are recommended because they are particularly suited to hydrological 
data, which are often strongly skewed (non-normal), seasonal and serially correlated. 
Resampling techniques are flexible, robust and powerful, and require only minimal 
assumptions to be made about the data. 
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Revue méthodologique de la détection de changements dans les 
chroniques hydrologiques 
Résumé Nous offrons un guide général des méthodes de détection de changement 
dans les séries chronologiques de données hydrologiques, comprenant les étapes de 
préparation d’un jeu de données convenable, d’analyse exploratoire, d’application des 
tests statistiques appropriés et d’interprétation des résultats. Bien que l’article ne 
puisse pas présenter en détail tous les tests existants, il donne une vision générale 
facile à suivre, offre des conseils pratiques, exprime quelques mises en garde et 
dénonce quelques idées fausses. Il sert de rappel, en attirant l’attention sur des points 
essentiels souvent ignorés. Une recommandation de l’article est que les méthodes 
basées sur des tests non-paramétriques, en particulier les méthodes de 
rééchantillonage, devraient être plus utilisées. Ces méthodes sont recommandées parce 
qu’elles conviennent particulièrement aux données hydrologiques, qui sont souvent 
fortement asymétriques (non normales), saisonnières et autocorrélées. Les techniques 
de rééchantillonnage sont flexibles, robustes et puissantes, et requièrent seulement des 
hypothèses minimales par rapport aux données.  
Mots clefs  détection de changement; tendance; test statistique; rééchantillonnage; données 
hydrologiques 

 
 
INTRODUCTION 
 
Detection of changes in long time series of hydrological data is an important and 
difficult issue, of increasing interest. The aim of the present paper is to summarize the 
essential components of a change detection study, and to offer broad recommendations 
and general guidance for methodology that is particularly suited to change detection in 
typical hydrological data.  
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 This paper partly draws from a report of a WMO/UNESCO/CEH workshop set up 
to review trend detection in hydrological series (Kundzewicz & Robson, 2000). The 
workshop, held at the Centre for Ecology and Hydrology in Wallingford, UK, in 
December 1998, brought together international experts from the hydrological and 
statistical community, and sought to make general recommendations on methodology 
for use in detection of trend and other change in hydrological data. 
 This paper attempts to remind investigators of the many necessary aspects that 
should form part of a trend detection study and discusses the key components of an 
analysis. The paper considers preparation of a suitable data set, emphasizing the 
importance of fully understanding the data. It briefly discusses exploratory analysis of 
the data, a visual approach that should form an integral part of any study of change. It 
also considers interpretation of the results, and the need for examining as much 
external evidence as possible in order to distinguish between trend that arises from 
land-use change, climate change, or simply from altered measurement techniques. 
 The main component of the paper looks at methods for hydrological change 
detection. It introduces distribution-free methods and resampling methods that are 
particularly suited to hydrological data and can be used in a wide range of situations 
under minimal data assumptions. 
 Although the present contribution cannot go into full details of the many existing 
tests, it gives an easy-to-follow overview, offering practical hints, and describing 
caveats and misconceptions. It serves as a refresher, raising attention to essential things 
that have often been ignored. 
 
 
DATA FOR HYDROLOGICAL CHANGE DETECTION 
 
Data are the backbone of any attempt to detect trend or other change in hydrological 
records. It is easy to neglect the importance of properly preparing and understanding 
the data to be used, and the necessity of working with data of as high a quality as 
possible. Data should be quality-controlled before commencing an analysis of change. 
Examples of problems linked to the data that can cause apparent changes in a data 
series are: typographical errors; instrument malfunction (zero-drift, bias); and change 
in measurement techniques, in instrumentation, or in instrument location, in accuracy 
of data, or in data conversions (e.g. altered rating equations). Such changes may occur 
either through time or at different sites, and these need to be identified. One should be 
open-minded at any stage of an analysis and keep an eye out for possible quality 
problems that may previously have been missed. Missing values and gaps in data are 
complicating factors. Whether or not to fill them, and if so, in what way, is a complex 
issue. The problem needs particular care when the gaps are non-random, e.g. following 
equipment damage from a flood event of exceptional magnitude. 
 It is important to consider carefully the form and frequency of the data that should 
be analysed. This usually depends on the focus of the study. The form in which the 
data are collected is not always the most appropriate for the study in question. For 
floods, the biggest flow is often of interest; for droughts, it may be the duration of low 
flows. Processing very frequent data is computationally intensive and such data may 
be highly correlated in time. It can be worth simplifying the data by reducing the 
frequency (aggregating) or using summary measures, such as maxima or averages. Use 
of data transformation (e.g. taking logarithms, or using ranks and normal scores) can 
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compensate for undesirable data properties, e.g. high skewness or strong departure 
from normality.  
 Selection of which stations to use in a study is also important. For example, the 
issue of detecting a climate change signature in river flow data is very complex 
because the process of river flow is the integrated result of several factors, such as 
precipitation inputs, catchment storage and evaporation losses. Furthermore, climate 
change signals may be overshadowed by strong natural background variability. These 
factors mean that particular care is needed in selecting data and sites for use in 
studying climate change. In order to study climate change signature in river flow, data 
should ideally be taken from pristine/baseline rivers and should be of high quality and 
extend over a long period. Where pristine sites are not available, it may be possible to 
eliminate other influences, or to conceptually reconstruct natural flows. Detailed 
suggestions on how to select a network of stations for climate change detection are 
given in Pilon (2000). 
 
 
EXPLORATORY DATA ANALYSIS 
 
Exploratory data analysis (EDA) is an advanced visual examination of the data. It 
involves using graphs to explore, understand and present data, and is an essential 
component of any statistical analysis. A study of change that does not include a 
thorough exploratory data analysis is not complete. The first use of EDA is usually to 
examine the raw data in order to identify such features as data problems (outliers, gaps 
in the record, etc.); temporal patterns (e.g. trend or step-change, seasonality); and 
regional and spatial patterns. Exploratory data analysis also plays an important role in 
checking out test assumptions such as independence, or statistical distribution of data 
values. Finally, EDA is invaluable when it comes to interpreting and presenting the 
results of a statistical analysis, e.g. for examining residuals, trend gradients and 
significance levels. 
 Exploratory data analysis allows a much greater appreciation of the features in 
data than tables of summary statistics and statistical significance levels. This is because 
the human brain and visual system is very powerful at identifying and interpreting 
patterns. It is often able to see important features, structures or anomalies in a data 
series that would be very difficult to detect in any other way. Just looking at the data 
can change initial preconceptions, can alter the questions that it is sensible to ask, and 
can uncover important aspects that might not otherwise have been found. 
 A well-conducted EDA is such a powerful tool that it can sometimes eliminate the 
need for a formal statistical analysis. Alongside EDA, statistical tests become a way of 
confirming whether an observed pattern is significant, rather than a means of searching 
through data. Further, EDA is often useful in identifying data quality problems. 
However, it is not a substitute for proper quality control of data. 
 A good EDA involves plotting, studying and refining graphs so as to highlight 
important features of the data and thus identify further graphs that are needed. 
Deciding which graphs to look at is a matter of judgement and experimentation. 
Common types of graph that can be useful for hydrological data series include 
histograms and normal probability plots, time series plots, autocorrelation plots, scatter 
plots and smoothing curves. For further details and examples applicable to hydro-
logical data, the user should refer to Grubb & Robson (2000). Excellent presentations 
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of the general principles of EDA can also be found in Cleveland (1994) and Tufte 
(1983). 
 
 
APPLICATION OF STATISTICAL TESTS 
 
Basics of statistical testing for change 
 
Change in a series can occur in numerous ways: e.g. gradually (a trend), abruptly (a 
step-change), or in a more complex form. It may affect the mean, median, variance, 
autocorrelation, or almost any other aspect of the data.  
 In order to carry out a statistical test, it is necessary to define the null and 
alternative hypotheses; these are statements that describe what the test is investigating. 
For example, to test for trend in the mean of a series the null hypothesis (H0) would be 
that there is no change in the mean of a series, and the alternative hypothesis (H1) 
would be that the mean is either increasing or decreasing over time. In carrying out a 
statistical test, one starts by assuming that the null hypothesis is true, and then checks 
whether the observed data are consistent with this hypothesis. The null hypothesis is 
rejected if the data are not consistent.  
 To compare between the null and alternative hypotheses, a test statistic is selected 
and then its significance is evaluated, based on the available evidence. The test statistic 
is simply a numerical value that is calculated from the data series that is being tested, 
which is selected so that it highlights the difference between the two hypotheses. A 
simple example of a test statistic is the linear regression gradient; this can be used to 
test for a trend in the mean. If there is no trend (the null hypothesis) then the regression 
gradient should have a value near to zero. If there is a large trend in the mean (the alt-
ernative hypothesis), then the value of the regression gradient would be very different 
from zero, being positive for increasing trend and negative for decreasing trend.  
 The significance level measures whether the test statistic is very different from the 
range of values that would typically occur under the null hypothesis. It is the 
probability that a test erroneously detects trend when none is present. Thus a 5% sig-
nificance level would be interpreted as strong evidence against the null hypothesis—
with a 1 in 20 chance of that conclusion being wrong. The significance level expresses 
the probability that the null hypothesis is incorrectly rejected; incorrect rejection of the 
null hypothesis is known as type I error (Table 1).  
 Another type of error (type II error, see Table 1) occurs when the null hypothesis 
is accepted (i.e. no trend is present) when the alternative hypothesis is true (a trend  
 
 
Table 1 Interpretation of errors of type I and II. 

Does a trend exist?  
Yes No 

Yes + Error of type I: false trend detected 
when none exists Has a 

trend 
been 
detected? No 

Error of type II: failure to detect an 
existing trend (e.g. due to weakness of the 
trend, or of the methodology, or shortness 
of the record) 

+ 
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exists). When a test has low type II error probability (i.e. the risk of incorrectly 
accepting the null hypothesis is low), the test is said to be powerful, and more 
powerful tests are to be preferred. The power of the test is the probability of correctly 
detecting a trend when one is present. 
 In carrying out a statistical test it is always necessary to consider assumptions, 
such as: 
 
 A specified form of distribution (e.g. assuming that the data are normally 
distributed). This assumption is violated if the data do not follow the specified 
distribution. 
 
 Constancy of the distribution (i.e. all data points have an identical distribution) 
This assumption is violated if there are seasonal variations or any other cycles in the 
data, or if there is an alteration over time in the variance or any other feature of the 
data that is not allowed for in the test.  
 
 Independence This assumption is violated if there is autocorrelation (correlation 
from one time value to the next; also referred to as serial correlation or temporal 
correlation) or, in the case of a multi-site study, spatial correlation (correlation between 
sites). 
 
 If the assumptions made in a statistical test are not fulfilled by the data, then test 
results can be meaningless, in the sense that the estimates of significance level would 
be grossly incorrect. Hydrological data are often strongly non-normal, and this means 
that tests which assume an underlying normal distribution are not adequate. Hydro-
logical data also typically either show autocorrelation and/or spatial correlation and, 
therefore, data values are not independent. They may also display seasonality, which 
violates assumptions of constancy of distribution.  
 
 
An outline of the main stages of a statistical analysis of change 
 
The main stages in statistical testing are: 
– Decide what type of series/variable to test depending on the issues of interest (e.g. 

monthly averages, annual maxima, deseasonalized data, etc.). 
– Decide what types of change are of interest (gradual trend or step-change). 
– Check out data assumptions (e.g. use exploratory data analysis, or a formal test). 
– Select a statistical test (more than one is good practice). This means selecting a test 

statistic and selecting a method for evaluating significance levels. 
– Evaluate significance levels.  
– Investigate and interpret results. 
 
 
Distribution-free testing 
 
There are many ways of testing for trend or other change in hydrological data. These 
range from traditional approaches such as maximum likelihood estimation, and 
Bayesian and time series methods, to newer approaches such as phase randomization 
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(Radziejewski et al., 2000) and smoothing techniques (e.g. locally weighted regres-
sion). Each of these methods has a time and a place for use. 
 In this paper, the focus will be on a particular group of methods called distribution-
free methods, and in particular, on one group of distribution-free methods known as 
resampling. A distribution-free method is one that does not require any assumption 
about the form of distribution that the data derive from, e.g. there is no need to assume 
data are normally distributed. 
 The following approaches are distribution-free: 
 
 Rank-based tests These use the ranks of the data values (not the actual data 
values). A data point has rank r if it is the rth largest value in a data set. There are a 
number of widely used and useful rank-based tests. Most rank-based tests assume that 
data are independent and identically distributed. Rank-based tests have the advantage 
that they are robust and usually simple to use. They are usually less powerful than a 
parametric approach. 
 
 Tests using a normal scores transformation There are many tests for change 
that rely on assumptions of normality. Such tests are generally not suitable for direct 
use with hydrological data, which are, typically, far from being normally distributed. 
However, such tests can be used if the data are first transformed. The normal scores 
transformation results in a data set that has a normal distribution. It is similar to 
using the ranks of a data series, but instead of replacing the data value by its rank, r, 
the data value is replaced by the typical value that the rth largest value from a sample 
of normal data would have (the rth normal score). The advantages of using normal 
scores are that the original data need not follow a normal distribution, and the test is 
relatively robust to extreme values. The disadvantage is that statistics measuring 
change, such as the regression gradient, cannot be easily interpreted. Normal scores 
tests are likely to give slightly improved power for detection of change relative to 
equivalent rank-based tests.  
 
 Tests using resampling approaches Resampling methods use the data to 
determine the significance of a test statistic. They are described in more detail below. 
 
 
Introducing resampling methods 
 
Resampling methods (permutation or bootstrap) are robust techniques for estimating 
the significance level of a test statistic. A useful practical text on resampling and 
permutation is provided by Good (1993), while Efron & Tibshirani (1998) and 
Davidson & Hinkley (1997) describe bootstrapping methods. The advantages of 
resampling are that it is a flexible method that can be adapted to a wide range of 
types of data, including autocorrelated or seasonal data. Resampling is also relatively 
powerful, e.g. for large samples, permutation tests can be shown to be as powerful as 
the most powerful parametric tests (Bickel & Van Zwet, 1978). Resampling methods 
are very useful for testing hydrological data because they require relatively few 
assumptions to be made about the data, yet they are also quite powerful tests.  
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Understanding resampling 
 
The basic idea behind resampling methods is very straightforward. Consider testing a 
series for trend: a possible test is the regression gradient. If there is no trend in the data 
(the null hypothesis), then the order of the data values should make little difference. 
Thus shuffling (permuting) the elements of the data series should not change the 
gradient very much. Under a permutation approach, the data are shuffled very many 
times. After each shuffle (permutation) the test statistic is recalculated. After very 
many permutations, the original test statistic is compared to the generated test statistic 
values. If the original test statistic is rather different from most of the generated values, 
then this suggests that the ordering of the data affects the gradient and thus that there 
was trend. If the original test statistic lies somewhere in the middle of the generated 
values, then it seems reasonable that the null hypothesis was correct (the order of the 
values does not matter, so there is no evidence of trend). In other words, if an observer 
(or in this case, the statistical test) can distinguish between the original data and the 
resampled (permuted) data, then the observed data are judged not to satisfy the null 
hypothesis. 
 
 
Permutation and the bootstrap 
 
The bootstrap and permutation methods are two slightly different approaches to 
resampling the data. In permutation methods (sampling with no replacement) the data 
are re-ordered, i.e. each of the data points in the original data series appears only once 
in each resampled (generated) data series. In bootstrap methods, the original data series 
is sampled with replacement to give a new series with the same number of values as 
the original data. The series generated with this method may contain more than one of 
some values from the original series and none of other values. In both cases, the 
generated series has the same distribution as the empirical (i.e. observed) distribution 
of the data. 
 The bootstrap is generally, but not always, less powerful than a permutation test 
(Good, 1993). However, bootstrap methods are often preferred where a test is looking 
for change in variance. Further, permutation tests cannot be applied with test statistics 
that do not change when the data are permuted, e.g. tests for which the test statistic is 
the mean or median. In general, bootstrap methods are more flexible than permutation 
methods and can be used in a wider range of circumstances. 
 
 
Number of resamples 
 
The number of resamples depends on the level of significance required and on the 
degree of change in the data. The larger the number of resamples, the more accurate 
the estimate of significance. More resamples will be required to accurately determine 
significance levels of 1% than of 10%. A simple approach to check whether the sample 
size is sufficient is to re-run a test a few times and check that the required percentiles 
of the generated test statistic values do not vary too much. 
 For permutation testing, all permutations could, theoretically, be evaluated. 
However, typically there are too many to be evaluated (for a series of length n there are 
n! permutations) and a random selection of possible permutations is used instead.  
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 Note that if confidence intervals are required, then sample sizes of 199, 999, 1999, 
etc. give exact confidence intervals (Faulkner & Jones, 1999), e.g. for 199 samples, the 
95% confidence interval is given by the fifth largest and smallest values; for 1999 
samples, the 95% confidence interval is given by the 50th largest and smallest values. 
 
 
Choice of resampling strategy 
 
The simplest resampling strategy is to permute or bootstrap individual data points, as 
described above. This technique is applicable only in the case where it can be assumed 
that the data are independent and non-seasonal.  
 If data show autocorrelation, or additional structure such as seasonality, then it is 
necessary that the series generated by resampling should replicate this structure. A 
straightforward means of achieving this is to permute, or bootstrap the data in blocks. 
For example, for a 40-year series of monthly values, it would be sensible to treat the 
data as consisting of 40 blocks of one year. Each year’s worth of data is left intact and 
is moved around together as a block, thus maintaining the seasonal and temporal 
dependencies within each year. The 40 blocks are then re-ordered many times. In this 
way, the resampled series would preserve the original seasonality. Similarly, blocks 
can be forced to replicate the autocorrelation in the data. It is important that the size of 
the blocks should be sensibly selected. If there is seasonality, then the block should 
contain an integral number of seasonal cycles. If there is autocorrelation, then the 
block should be chosen so that data points one block apart are approximately 
independent.  
 Note also that blocking methods can be useful when there is spatial dependency in 
a set of multi-site data that is to be tested as a group. In this case, the usual choice of 
blocks would be to group data across all sites that have data that occur in the same time 
interval (e.g. Robson et al., 1998).  
 
 
SOME COMMONLY USED TESTS AND TEST STATISTICS 
 
This section lists a number of standard tests for detection of step-change and gradual 
trend. The tests are described in their standard or basic form, i.e. in a non-resampling 
framework. Each of these tests can be easily adapted to be a resampling test. For this, 
the same test statistic is calculated as for the basic test, but the significance level is  
 
 
Table 2 General applicability of tests. 

Situation Guidelines for test selection  
Data are normally distributed, 
independent and non-seasonal 

This is an unlikely scenario for hydrological data. If applicable, any of 
the tests listed below should be suitable. 

Data are independent and non-
seasonal, but are non-normal 

Any of the distribution-free tests are suitable. Tests that are based on 
normality assumption can also be applied, either by (a) first applying a 
normal scores or ranks transformation, or by (b) using a relevant test 
statistic and evaluating significance using resampling techniques. 

Data are non-normal and are 
not independent, or are 
seasonal 

For almost all the tests listed below, it will be necessary to extract the 
test statistic, and then to evaluate significance levels using block-
permutation or block-bootstrap methods. Without this test assumptions 
will not be met. The exception is the Seasonal Kendall test, which may 
be used with seasonal data. 
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obtained using the resampling approach. Whether it is appropriate to use the basic test 
procedure (i.e. without resampling), will depend on the assumptions that can be made 
about the data (cf. Table 2). 
 Note that all tests assume that, under the null hypothesis, the distribution of data 
values does not change with either time or space. If this is not appropriate, then more 
sophisticated testing approaches will be necessary.  
 For resampling techniques, it is possible to construct new test statistics to test for a 
particular type of change; it is not necessary to select test statistics from known tests. 
Having the flexibility to construct “custom” test statistics allows great flexibility in 
what can be tested for. 
 
 
Tests for step change 
 
1. Median change point test/Pettitt’s test for change This is a rank-based test for a 
change in the median of a series with the exact time of change unknown (Pettitt, 1979; 
Siegel & Castellan, 1988). The test is considered to be robust to changes in distributional 
form and relatively powerful, e.g. compared to the Wilcoxon-Mann-Whitney test (see 
below). 
 
2. Wilcoxon-Mann-Whitney test/Mann-Whitney test/Mann-test/Rank-sum test This 
is a rank-based test that looks for differences between two independent sample groups 
(Siegel & Castellan, 1988; WMO, 1988; Helsel & Hirsch, 1992). It is based on the 
Mann-Kendall test statistic (see test 9 below), but is calculated for subsets of the series in 
order to detect the point of change in the mean (Chiew & McMahon, 1993). In its basic 
form it assumes that the time of change is known. When the time of change is unknown, 
use of the median change-point test is recommended. 
 
3. Distribution-free CUSUM test This is a rank-based test in which successive 
observations are compared with the median of the series (Chiew & McMahon, 1993; 
McGilchrist & Woodyer, 1975). The test statistic is the maximum cumulative sum 
(CUSUM) of the signs of the difference from the median (i.e. the CUSUM of a series 
of values of +1 or –1) starting from the beginning of the series. 
 
4. The Kruskal-Wallis test The Kruskal-Wallis test (Sneyers, 1975), is a rank-based 
test for equality of sub-period means. It can also be used to test for equality of sub-
period variability.  
 
5. Cumulative deviations and other CUSUM tests The cumulative deviation test 
(Buishand, 1982) is based on the rescaled cumulative sum of the deviations from the 
mean. The test is relatively powerful in comparison with other tests (e.g. Worsley 
likelihood ratio test; Buishand, 1982) for a change-point that occurs towards the centre 
of the time series. The basic test assumes normally distributed data. Other CUSUM 
based tests (using Bayesian and likelihood methods) are described in Buishand (1984).  
 
6. Student’s t test This is a standard parametric test for testing whether two samples 
have different means. In its basic form it assumes normally distributed data and a known 
change-point time. 
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7. The Worsley likelihood ratio test The Worsley likelihood ratio test (Worsley, 
1979) is similar to Student’s t test but is suitable for use when the change-point time is 
unknown. It assumes normality. 
 
 
Tests for trend  
 
8.  Spearman’s rho This is a rank-based test for correlation between two variables 
that can be used to test for a correlation between time and the data series (Siegel & 
Castellan, 1988). Spearman’s correlation is a rank-based version of the usual para-
metric measure of correlation (the Pearson product moment; Sprent, 1989).   
 
9. Kendall’s tau/Mann-Kendall test This is another rank-based test, which is similar 
to Spearman’s rho (same power and still based on ranks), but using a different measure 
of correlation which has no parametric analogue. 
 
10. Seasonal Kendall test The Seasonal Kendall test is a version of the Mann-Kendall 
test that allows for seasonality in the data (Hirsch et al., 1982). There is also a modified 
seasonal Kendall test that additionally allows for some autocorrelation in the data 
(Hirsch & Slack, 1984).   
 
11. Linear regression The test statistic for linear regression is the regression gradient. 
This is one of the most common tests for trend and, in its basic form, assumes that data 
are normally distributed. 
 
12. Other robust regression tests There are a number of robust methods for 
estimating trend in series. These could potentially be used as alternative measures of 
the change. For example, in least absolute deviation regression, the gradient is that 
which minimizes the sums of the deviations of the points from the fitted line 
(Bloomfield & Steiger, 1983). Other robust means of estimating the rate of change 
include M-estimates of regression and trimmed regression (Rousseeuw & Leroy, 
1987).  
 
 
INTERPRETING TEST RESULTS 
 
When interpreting test results it is necessary to remember that no statistical test is 
perfect, even if all test assumptions are met. Assuming a 5% significance level means 
that an error will be made, on average, for 5% of the time: i.e. if the null hypothesis 
was true then one in 20 test results will be significant and incorrect. If more than one 
test has been applied to the data, interpretation of results can be complex. The presence 
of a single significant test result may only be weak evidence of change—even if this 
test is highly significant. If more tests are significant then this provides stronger 
evidence of change, unless they are very similar, in which case multiple significance is 
not an extra proof of change.  
 It is important to examine the test results alongside graphs of the data, and with as 
much historical knowledge about the data as possible. For example, if both step-
change and trend results are significant, extra information will be needed to determine 
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which of these provides the best description of the change. If historical investigations 
reveal that a dam was built during the period, and this is consistent with the time series 
plot, then a reasonable conclusion would be that the dam caused a step change. It can 
often be helpful to look out for patterns in the results that may indicate further 
structure, e.g. regional patterns in trends. These may suggest that further investigation 
is needed. 
 If a test indicates a significant change in a data series, then it is important to try to 
understand the cause. For example, the investigator may be interested in detecting 
climate change, but there may be many other possible explanations, such as changes 
caused directly by man (urbanization, reservoirs, drainage systems, water abstraction, 
land-use change etc.), natural catchment changes (e.g. natural changes in channel 
morphology), climate variability and problems linked to data (see earlier section). 
 It is very important to understand the difference between climate variability and 
change, where the former is the natural variation in the climate from one period to the 
next, while the latter refers to a long-term alteration in the climate. Climate variability 
appears to have a very marked effect on many hydrological series. This has two 
important consequences: 
 
 Climate variability can cause apparent trend Climate variability can easily give 
rise to apparent trend when records are short—these are trends that would be expected 
to disappear once more data had been collected. Because of climate variability, records 
of 30 years or less are almost certainly too short; at least 50 years of record is 
necessary for climate change detection. 
 
 Climate variability obscures other changes Because climate variability is 
typically large, it can effectively obscure any underlying changes due either to climate 
change or to urbanization. 
 
 The best way to improve understanding of change is to gather as much information 
as possible, using, e.g. information about changes in the catchment (land-use change, 
etc.) and about data collection methods. Data from nearby sites can also be useful—if 
they show similar patterns, then the cause is probably widespread (e.g. linked to 
climate, or to extensive land-use change). In addition, related variables (proxies) can 
be used—information on temperature and rainfall can help determine whether changes 
in flow can be explained by climatic factors. If related data can be obtained that extend 
to a longer period than the original data, this may be of assistance. 
 
 
CONCLUDING REMARKS 
 
This paper has outlined the key components required for a study of change in hydro-
logical data. It has emphasized the critical role of accurate and well-understood data, of 
using exploratory data analysis as a key part of the analysis, of paying adequate 
attention to the validity of assumptions, of selecting tests and determining the signifi-
cance levels, and of taking a wide perspective when interpreting test results. 
 This paper focuses on the use of distribution-free methods and, particularly, re-
sampling methods for testing hydrological data. It briefly presents a variety of 
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common tests. Distribution-free methods are recommended because they allow 
minimal assumptions to be made about the data and are therefore particularly suited to 
hydrological series, which are often neither normally distributed nor independent. 
Resampling techniques are a particularly flexible approach as they can be used even 
when data are autocorrelated or seasonal, by employing block-permutation or block-
bootstrap techniques. 
 The present contribution provides general guidance and recommendations for 
detecting change in time series of hydrological records. Only fundamental ideas, rather 
than details of individual tests, are presented here. Readers who are interested in a 
more detailed exposition may wish to consult a more extensive report (Kundzewicz & 
Robson, 2000), which is available free of charge upon request from the World 
Meteorological Organization, Hydrology and Water Resources Department, 7 bis av. 
de la Paix, Case Postale no. 2300, CH-1211 Geneva, Switzerland. 
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